Engineering

Typical Career Fields:

Any Engineering Discipline
- Research & Development
- Design
- Production
- Operations

Aerospace
- Propulsion
- Fluid Mechanics
- Thermodynamics

Biomedical
- Bioinstrumentation
- Biomechanics

Chemical & Biomolecular
- Bulk & Fine Chemicals
- Consumer Products
- Biotech & Pharmaceuticals

Civil
- Structural
- Urban Planning

Computer
- Information Protection
- Communications & Wireless Networks
- Computational Science
- Operating Systems

Electrical
- Automatic Controls
- Bioelectronics
- Digital Systems

Engineering Physics
- Engineering (Process & Testing)

Environmental
- Air Quality
- Water Quality
- Solid/Water Waste Mgt
- Toxic Waste Mgt

Industrial
- Project, Program or Operations Mgt
- Manufacturing Systems
- Supply Chain Mgt & Logistics

Materials Science & Engineering
- Metallurgy
- Ceramics
- Plastics/Polymers
- Composites
- Semiconductors & Electronic Materials

Management
- Teaching
- Consulting
- Sales & Marketing

Aerospace
- Structural Design
- Celestial Mechanics
- Acoustics

Biomedical
- Biomaterials
- Systems Physiology

Chemical & Biomolecular
- Electronics
- Environmental Safety & Health

Civil
- Environmental
- Water Resources

Computer
- Computer Networks
- Computer Systems
- Embedded Systems
- Computer Vision & Robotics

Electrical
- Electromagnetics
- Analog Electronics
- Power & Energy Systems

Engineering Physics
- Quality Control
- Research

Environmental
- Hazardous Waste Cleanup/ Bioremediation
- Industrial hygiene
- Radiation Protection

Industrial
- Productivity, Methods, & Process Engineering
- Quality Measurement & Improvement
- Human Factors
- Strategic Planning

Materials Science & Engineering
- Optical Materials
- Biomaterials
- Nanomaterials
- Material Research & Development
- Extraction/ Synthesis

Management
- Law
- Manufacturing
- Healthcare

Aerospace
- Guidance & Control Systems

Biomedical
- Clinical Engineering
- Rehabilitation Engineering

Chemical & Biomolecular
- Fuels & Energy Conversion
- Materials
- Process Design

Civil
- Transportation
- Geotechnical

Computer
- Circuit Design
- Signal, Image, & Speech Processing
- VLSI
- Bioinformatics

Electrical
- Communications & Signal Processing

Engineering Physics
- Development
- Instrumentation

Environmental
- Public Health
- Land/ Wildlife Mgt
- Recycling

Industrial
- Mgt of Change
- Financial Engineering
- Engineering Mgt
- Six Sigma
- Lean

Materials Science & Engineering
- Processing
- Structure Analysis
- Performance
- Failure Analysis
- Material Selection
Mechanical
- Machine Design
- Systems Design
- Manufacturing & Production
- Energy Conversion
- Energy Resources
- Transportation & Environmental Impact
- Materials & Structures

Nuclear
- Electrical Power Reactor Facilities
- Nuclear Fuel Cycle Facilities
- Nuclear Instrumentation for Industrial Applications
- Radioactive Waste Mgt
- Environmental Science
- Medical Research & Technology
- Space Exploration
- Food Supply

🌟 = Bright Outlook

Source: O*NET

Top Ten Career Fields Chosen by ESU Engineering Grads: (Source: Linkedin)

<table>
<thead>
<tr>
<th>Field</th>
<th>Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>180</td>
</tr>
<tr>
<td>Information Technology</td>
<td>160</td>
</tr>
<tr>
<td>Operations</td>
<td>140</td>
</tr>
<tr>
<td>Sales</td>
<td>120</td>
</tr>
<tr>
<td>Program & Project Mgt</td>
<td>100</td>
</tr>
<tr>
<td>Education</td>
<td>80</td>
</tr>
<tr>
<td>Support</td>
<td>60</td>
</tr>
<tr>
<td>Entrepreneurship</td>
<td>40</td>
</tr>
<tr>
<td>Human Resources</td>
<td>20</td>
</tr>
<tr>
<td>Research</td>
<td>0</td>
</tr>
</tbody>
</table>

Where Our Grads Go (top ten):
- Wolf Creek
- Sprint
- Burns & McDonnell
- Black & Veatch
- Kansas State Univ
- Spirit AeroSystems
- AT&T
- Boeing
- ConocoPhillips
- Garmin International

View a list of required courses for this major at http://www.emporia.edu/sac/list-of-majors.html.

Career Services
career@emporia.edu
620-341-5407

www.emporia.edu/careerservices
Engineering Majors
Strategies on how to become more marketable at graduation

Any Engineering Discipline (Research and Development, Design, Production, Operations, Management, Manufacturing, Law, Consulting)
- Obtain relevant experience through co-ops or internships for industry-related career.
- Develop strong verbal, written, teamwork and problem-solving skills.
- Pursue Master of Science (MS), Master of Engineering (ME), or Master of Business Administration (MBA) degrees for increased opportunities in technical management.
- Learn federal, state and local government job application procedures. Pursue Professional Engineering licensure.

Aerospace (Propulsion, Thermodynamics, Structural Design, Acoustics, Control Systems)
- Anticipate specializing in the development of new technologies or in particular aerospace products.
- Stay abreast of status of federal funding for defense and space programs.
- Seek knowledge of computer-aided design (CAD) software, robotics, optics and lasers.
- Seek co-op or internship opportunities in the aerospace industry.
- Develop effective verbal and written communication skills and learn to work well on a team.
- Join chapters of national organizations such as the American Institute of Aeronautics and Astronautics to build a network of professional contacts and participate in design competitions.

Chemical and Bimolecular (Biotechnology, Pharmaceuticals, Fuels and Energy Conversion, Fine Chemicals)
- Combines chemistry, physics, biology and engineering to solve problems involving the use or production of chemicals and biological systems to develop new materials.
- Pursue a strong foundation in fundamentals in lower division classes as well as specialized knowledge for specific career opportunities in upper division classes.
- Pursue experimental design, data interpretation, and problem solving competence through coursework and research with professors.
- Seek internship or co-op experiences in the chemical engineering field.
- Join professional associations such as American Institute of Chemical Engineers to maintain current knowledge of opportunities in the field.

Civil (Structural, Urban Planning, Construction, Environmental, Geotechnical)
- Pursue a strong background of engineering fundamentals as preparation for entering the work force or graduate school.
- Develop the ability to communicate effectively, as civil engineers are likely to collaborate with professionals in a variety of disciplines.
- Seek experience organizing and directing people and materials through related internships, co-ops, summer jobs and leadership experiences in student organizations.
- Join the American Society of Civil Engineers to participate in projects and activities to increase marketability beyond graduation.

Electrical (Bioelectronics, Electromagnetics, Power and Energy, Digital Systems)
- Prepare for a course load including engineering fundamentals, math, science and electrical engineering.
- Pursue design projects and laboratory experience throughout college career.
- Seek related experience through research, internships, co-ops or part-time employment.
- Join student chapters of industry organizations such as Institute for Electrical and Electronics Engineers (IEEE) to develop communication and leadership skills, to participate in competitions.